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Introduction

The growing use of NLP for social impact applications [1,2] has resulted
N an increasing number of novel information extraction (IE) tasks that
share several common characteristics:

« |Low-resource: Existing task-specific labels are unavailable [3]

* Need for expert knowledge: Extracting features of interest often relies
on domain-specific expert knowledge, e.g. genre or content

« Sensitive data: Privacy concerns place constraints on usable methods

These tasks call for I|E methods that can capture expert knowledge with
both high precision and high recall in a way that is lightweight, low-cost,
and accessible to researchers across many domains. We propose a
PLM-AUGMENTED RULE-BASED CLASSIFIER: a high-precision rule-based
classifier augmented with the results of a PLM finetuned on its output.

Related Work

* Rule-based classifiers can explicitly incorporate expert knowledge
with high precision in an interpretable way [4,5], but generating fully
comprehensive rules Is time-consuming and limits recall

Finetuned PLMs often perform well on domain-specific tasks but face
the data scarcity bottleneck. PLMs finetuned on a small quantity of
gold labels or a large quantity of labels generated via weak/distant
supervision [3] are susceptible to issues like overfitting [0]

In-context Learning (ICL) has enabled LLMs to perform well on many
unseen tasks but even very large LLMs like ChatGPT lag behind
SOTA performance on standard |E tasks [7,8]
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Figure 1: Method Overview

Northwestern University

ﬁ

Test Case: a novel linguistic 1E task

strongly recommend him
recommend her without hesitation
am delighted to recommend him

my highest recommendation

my full and enthusiastic endorsement
this letter of strong support

Figure 2: Examples of feature

Feature: “evaluative expressions,” a novel linguistic feature we identify
INn recommendation letters

Dataset. ~120k recommendation letters written in support of graduate
school applications, anonymized using NER

Performance metric: relaxed span match (2+ overlapping tokens) [9]

Method implementation

1. Perform expert review of small data subset
« 320 letters randomly sampled for expert annotation by 3 annotators
« High IAA, with average pairwise positive specific agreement of 0.921

2. Develop a high-precision rule-based classifier

« Subset of HA train set used to identity patterns representing most
common evaluative expression structures in the dataset

RB algorithm written to perform regular-expression string-matching
High precision design constrained prediction noise to false negatives.

. Use weakly supervised training data to finetune a PLM
« (Generated weakly supervised labels with RB classifier

 |f RB classifier predicted at least one EE in a randomly selected
document, one positive example (sentence containing EE) and
one negative example (sentence not containing an EE) were
sampled from the document

» Tokens labeled using |O format

Rule-based (RB)
train set test set train set test set

documents 225 101 7500 1000

examples 692 326 15,000 2000

Table 1: Data distribution

Human-annotated (HA)

* Finetuned DistilBERT [10] models for token classification task

* Three models trained on different datasets: HA only (gold
labels), RB only (weak supervision), and both

* Performed hyperparameter tuning with random search, selecting
model with lowest validation loss

4. Augment rule-based predictions with PLM predictions

* Used union operation as simple combination approach, including the
longer prediction when RB and PLM predictions were non-identical
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Table 2: Summary of results

. Rule-based classifier (1) achieves high precision but moderate recall,
since It Is Impossible to create completely comprehensive rules

. PLM finetuned on small gold label set (2) achieves high recall but
moderate precision, while the PLMs finetuned on large weakly-
supervised sets (3 & 4) overfit to the training data

. Few-shot prompted Mistral-7B (5) achieves only moderate precision
and moderate recall even after significant post-processing

. Our approach, the PLM-augmented rule-based classifier (7 & 8),
achieves both high precision and high recall for the highest overall
performance of all models tested

Contributions & Limitations

« We combine the advantages of rule-based and PLM-based
approaches to achieve high precision and high recall on a novel |E
task requiring domain-specific knowledge

Our method is computationally lightweight, low-cost, and relatively
accessible to researchers in a variety of domains

This approach is applicable only to the subset of low-resource |E
tasks relying on expert knowledge that can be formalized into high-
precision rules
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